刊名: 教师教育研究
主办: 北京师范大学;华东师范大学;高等学校教资培训交流北京中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-5905
CN: 11-5147/G4
邮发代号:2-418
历史沿革:
曾用刊名:高等师范教育研究
期刊荣誉:社科双效期刊;国家新闻出版总署收录;中国期刊网核心源刊;CSSCI 中文社会科学引文索引来源期刊;北京大学《中文核心期刊要目总览》来源期刊;
创刊时间:1989
浅谈如何培养学生的数学探索能力
【作者】 万华保
【机构】 江西省南昌县幽兰中学
【摘要】【关键词】
【正文】培养学生的数学探索能力,它包含了许多方面,以下是我在教学实践中,培养学生数学探索能力的几点尝试,它包括培养兴趣、指导方法、鼓励质疑、鼓励创新等几个方面。
一、培养数学兴趣,让学生学有动力
兴趣是动力的源泉,要获得持久不衰的学习数学的动力,就要培养学生的数学兴趣。在教学中我做到了以下几点:1.加强基础知识的教学,使学生能接近数学。数学并不神秘,数学就在我们周围,我们时时刻刻都离不开数学。2.重视数学的应用教学,提高学生对数学的认识。许多人认为,学那么多数学有什么用?日常生活中根本用不到。事实上,数学的应用充斥在生活的每个角落。以往的教材是和生活实践是脱节的,新教材在这方面有了很大改进,这也是向数学应用迈出的一大步,比如线性规划问题就是二元一次不等式组的一个应用。教学中重视数学的应用教学,能让学生充分感受到数学的作用和魅力,从而热爱数学。3.引入数学实验,让学生感受到数学的直观。让学生以研究者的身份,参与包括探索、发现在内的获得知识的全过程,使其体会到通过自己的努力取得成功的快乐,从而产生浓厚的兴趣和求知欲。4.鼓励攻克数学,使其在发现和创造中享受成功的喜悦。数学之所以能吸引一代又一代人为之拼搏,很大程度上是因为数学研究的过程中,充满了成功和欢乐。孔子说:知之者不如好之者,好之者不如乐之者,学生们学习乐在其中,才能培养出学生不断探索的欲望。
二、指导学习方法,给学生学习的钥匙
学生一旦掌握了学习方法,就能自己打开知识宝库的大门。因此,改进课堂教学,不但要帮助学生“学会”,更要指导学生“会学”。在教学中,我主要在读、议、思等几个方面给以指导。
我们知道,数学观察力是一种有目的、有选择并伴有注意的对数学材料的知觉能力。教会学生阅读,就是培养学生对数学材料的直观判断力,这种判断包括对数学材料的深层次、隐含的内部关系的实质和重点,逐步学会归纳整理,善于抓住重点以及围绕重点思考问题的方法。这在预习和课外自学中尤为重要。
在教学中鼓励学生大胆发言,对于对于那些容易混淆的概念,没有把握的结论、疑问,就积极引导学生议,真理是愈辩愈明,疑点愈理愈清。对于学生在议中出现的差错、不足,老师要耐心引导,帮助他们逐步得到正确的结论。
从某种意义上来说,思考尤为重要,它是学生对问题认识的深化和提高的过程。养成反思的习惯,反思自己的思维过程,反思知识点和解题技巧,反思各种方法的优劣,反思各种知识的纵横联系,适时地组织引导学生展开想象:题设条件能否减弱?结论能否加强?问题能否推广?等等。
三、鼓励质疑,激发学生挑战的勇气
我们会经常遇到这样的情况:有的同学在解完一道题是时,总是想问老师,或找些权威的书籍,来验证其结论的正确。这是一种不自信的表现,他们对权威的结论从没有质疑,更谈不上创新。初中阶段,应该培养学生相信自己,敢于怀疑的精神,甚至应该养成向权威挑战的习惯,这对他们现在的学习,特别是今后的探索和研究尤为重要。若果真找出“权威”的错误,对学生来讲也是莫大的鼓舞。例如:抛物线y2=2px的一条弦直线是y=2x+5,且弦的中点的横坐标是2,求此抛物线方程。某“权威答案”如下:
由y=2x+5,y2=2px得:4x2+(10-p)x+25=0 ①
由x1+x2=-(10-p)/4 得 p=2 故所求抛物线方程为
y2=4x
质疑:把p=2代入方程①,方程无实解,或方程①要有Δ=4p(p-20)>0,即p<0,或p>20,故p=2不合题意。本题无解。
教学中,对这样的新发现、巧思妙解及时褒奖、推广,能激起他们不断进取,努力钻研的热情。而且我认为,质疑教学,对学生今后独立创造数学新成果很有帮助,也是数学探索能力的一个重要方面。
四、鼓励学习创新,让学生学有创见
在数学教学中,我们不仅要让学生学会学习,而且要鼓励创新,发展学生的学习能力,让学生创造性地学习。
1.注意培养学生发现问题和提出问题的能力,老师要深入分析并把握知识间的联系,从学生的实际出发,依据数学思维规律,提出恰当的富于启发性的问题,去启迪和引导学生积极思维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
2.引导学生广开思路,重视发散思维,鼓励学生标新立异,大胆探索。例如,己知点P(x,y)是圆(x-3)2+(y-4)2=1上的点,求y/x的最大值和最小值。本题如用参数方程或直接利用点在圆上的性质,则解决较繁琐,若能打破常规,作恰当点拨,引导学生数形结合,设k=y/x,即求直线y=kx的斜率的最大值和最小值问题,再进一步引导,求(y+1)/(x+2)的最大值和最小值问题,可把定点分圆上、圆内、圆外几种情况进行讨论,则对求y/x之类的数的最大值、最小值问题的几何意义有更深的了解。
五、积极思考,培养学生思维能力
如:在一个面积为12平方厘米的正方形内剪一个最大的圆,所剪圆的面积是多少平方厘米?
按常规的思考方法:要求圆的面积,需先求出圆的半径,根据题意,圆的半径就是正方形边长的一半,但 根据题中所给条件,用小学的数学知识无法求出。换个角度来考虑:可以设所剪圆的半径为r, 那么正方形的 边长为2r, 正方形的面积为(2r)[2]=4r[2]=12,r[2]=3,所以圆的面积是3.14×3=9.42(平方厘米)。
还可以这样想:把原正方形平均分成4个小正方形, 每个小正方形的边长就是所剪圆的半径,设圆的半径 为r, 那么每个小正方形的面积为r[2],原正方形的面积为4r[2],r[2]=12÷4,所剪圆的面积是3.14×(12 ÷4)=9.42(平方厘米)。
通过此类题的练习,有利于培养学生思维能力,提高灵活解题的能力。激发学生丰富的想象力和强烈的好奇心,提高学生的学习兴趣,调动学生主动参 与的积极性。
一、培养数学兴趣,让学生学有动力
兴趣是动力的源泉,要获得持久不衰的学习数学的动力,就要培养学生的数学兴趣。在教学中我做到了以下几点:1.加强基础知识的教学,使学生能接近数学。数学并不神秘,数学就在我们周围,我们时时刻刻都离不开数学。2.重视数学的应用教学,提高学生对数学的认识。许多人认为,学那么多数学有什么用?日常生活中根本用不到。事实上,数学的应用充斥在生活的每个角落。以往的教材是和生活实践是脱节的,新教材在这方面有了很大改进,这也是向数学应用迈出的一大步,比如线性规划问题就是二元一次不等式组的一个应用。教学中重视数学的应用教学,能让学生充分感受到数学的作用和魅力,从而热爱数学。3.引入数学实验,让学生感受到数学的直观。让学生以研究者的身份,参与包括探索、发现在内的获得知识的全过程,使其体会到通过自己的努力取得成功的快乐,从而产生浓厚的兴趣和求知欲。4.鼓励攻克数学,使其在发现和创造中享受成功的喜悦。数学之所以能吸引一代又一代人为之拼搏,很大程度上是因为数学研究的过程中,充满了成功和欢乐。孔子说:知之者不如好之者,好之者不如乐之者,学生们学习乐在其中,才能培养出学生不断探索的欲望。
二、指导学习方法,给学生学习的钥匙
学生一旦掌握了学习方法,就能自己打开知识宝库的大门。因此,改进课堂教学,不但要帮助学生“学会”,更要指导学生“会学”。在教学中,我主要在读、议、思等几个方面给以指导。
我们知道,数学观察力是一种有目的、有选择并伴有注意的对数学材料的知觉能力。教会学生阅读,就是培养学生对数学材料的直观判断力,这种判断包括对数学材料的深层次、隐含的内部关系的实质和重点,逐步学会归纳整理,善于抓住重点以及围绕重点思考问题的方法。这在预习和课外自学中尤为重要。
在教学中鼓励学生大胆发言,对于对于那些容易混淆的概念,没有把握的结论、疑问,就积极引导学生议,真理是愈辩愈明,疑点愈理愈清。对于学生在议中出现的差错、不足,老师要耐心引导,帮助他们逐步得到正确的结论。
从某种意义上来说,思考尤为重要,它是学生对问题认识的深化和提高的过程。养成反思的习惯,反思自己的思维过程,反思知识点和解题技巧,反思各种方法的优劣,反思各种知识的纵横联系,适时地组织引导学生展开想象:题设条件能否减弱?结论能否加强?问题能否推广?等等。
三、鼓励质疑,激发学生挑战的勇气
我们会经常遇到这样的情况:有的同学在解完一道题是时,总是想问老师,或找些权威的书籍,来验证其结论的正确。这是一种不自信的表现,他们对权威的结论从没有质疑,更谈不上创新。初中阶段,应该培养学生相信自己,敢于怀疑的精神,甚至应该养成向权威挑战的习惯,这对他们现在的学习,特别是今后的探索和研究尤为重要。若果真找出“权威”的错误,对学生来讲也是莫大的鼓舞。例如:抛物线y2=2px的一条弦直线是y=2x+5,且弦的中点的横坐标是2,求此抛物线方程。某“权威答案”如下:
由y=2x+5,y2=2px得:4x2+(10-p)x+25=0 ①
由x1+x2=-(10-p)/4 得 p=2 故所求抛物线方程为
y2=4x
质疑:把p=2代入方程①,方程无实解,或方程①要有Δ=4p(p-20)>0,即p<0,或p>20,故p=2不合题意。本题无解。
教学中,对这样的新发现、巧思妙解及时褒奖、推广,能激起他们不断进取,努力钻研的热情。而且我认为,质疑教学,对学生今后独立创造数学新成果很有帮助,也是数学探索能力的一个重要方面。
四、鼓励学习创新,让学生学有创见
在数学教学中,我们不仅要让学生学会学习,而且要鼓励创新,发展学生的学习能力,让学生创造性地学习。
1.注意培养学生发现问题和提出问题的能力,老师要深入分析并把握知识间的联系,从学生的实际出发,依据数学思维规律,提出恰当的富于启发性的问题,去启迪和引导学生积极思维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
2.引导学生广开思路,重视发散思维,鼓励学生标新立异,大胆探索。例如,己知点P(x,y)是圆(x-3)2+(y-4)2=1上的点,求y/x的最大值和最小值。本题如用参数方程或直接利用点在圆上的性质,则解决较繁琐,若能打破常规,作恰当点拨,引导学生数形结合,设k=y/x,即求直线y=kx的斜率的最大值和最小值问题,再进一步引导,求(y+1)/(x+2)的最大值和最小值问题,可把定点分圆上、圆内、圆外几种情况进行讨论,则对求y/x之类的数的最大值、最小值问题的几何意义有更深的了解。
五、积极思考,培养学生思维能力
如:在一个面积为12平方厘米的正方形内剪一个最大的圆,所剪圆的面积是多少平方厘米?
按常规的思考方法:要求圆的面积,需先求出圆的半径,根据题意,圆的半径就是正方形边长的一半,但 根据题中所给条件,用小学的数学知识无法求出。换个角度来考虑:可以设所剪圆的半径为r, 那么正方形的 边长为2r, 正方形的面积为(2r)[2]=4r[2]=12,r[2]=3,所以圆的面积是3.14×3=9.42(平方厘米)。
还可以这样想:把原正方形平均分成4个小正方形, 每个小正方形的边长就是所剪圆的半径,设圆的半径 为r, 那么每个小正方形的面积为r[2],原正方形的面积为4r[2],r[2]=12÷4,所剪圆的面积是3.14×(12 ÷4)=9.42(平方厘米)。
通过此类题的练习,有利于培养学生思维能力,提高灵活解题的能力。激发学生丰富的想象力和强烈的好奇心,提高学生的学习兴趣,调动学生主动参 与的积极性。