中国学术文献网络出版总库

刊名: 教师教育研究
主办: 北京师范大学;华东师范大学;高等学校教资培训交流北京中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-5905
CN: 11-5147/G4
邮发代号:2-418

历史沿革:
曾用刊名:高等师范教育研究
期刊荣誉:社科双效期刊;国家新闻出版总署收录;中国期刊网核心源刊;CSSCI 中文社会科学引文索引来源期刊;北京大学《中文核心期刊要目总览》来源期刊;
创刊时间:1989

浅析初中数学课堂本质,提高教学效果

【作者】 王 霞

【机构】 四川省宜宾市翠屏区方水中心学校

【摘要】
【关键词】
【正文】摘   要:数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的东西,就要教的透彻”。教师只有不断揣摩教材,才能对教材有独到的体悟,在课堂教学中也才能做到“精彩纷呈”。把数学的形式化逻辑链条,恢复为当初数学家发明创新时的火热思考,做到返璞归真。
  关键词:数学本质    返璞归真    火热思考    主动建构
  教师的教学在于能够“授人以业”、“授人以法”、“授人以道”。从所授知识要求的角度来看,“授人以业”要求所授知识“准确”;“授人以法”要求所授知识“深刻”,而“授人以道”则更多地要求所授知识“本质”。显然,一堂高效的数学课教学必须呈现“数学本质”。对于“数学本质”本身不同的理解有不同的视角,我们在课堂中要追求的“数学本质”,一般其内涵包括:数学知识的内在联系;数学规律的形成过程;数学思想方法的提炼;数学理性精神(依靠思维能力对感性材料进行一系列的抽象和概括、分析和综合,以形成概念、判断或推理,这种认识为理性认识。重视理性认识活动,以寻找事物的本质、规律及内部联系)的体验等方面。
  基于对“数学本质”内涵的认识,本人认为要在课堂中呈现“数学本质”,提高初中数学课堂效果,应从以下几个方面下功夫。
  一、教师要深透领悟教材内容。
  数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的东西,就要教的透彻”。为求透彻,教师必须深钻教材,“沉下去”,理清知识发生的本原,把握教材中最主要、最本质的东西。回顾自己上过的许多的课,总感到有些许的憾意:课堂缺少耐人回味的东西,缺少引起学生思考的部分,对教材内容的领悟浅薄,缺少厚重感。本人认为要弥补这些憾意,教师对教材的领悟必须有自己的眼光,目光要深邃,看到的不能只是文字、图表和各种数学公式定理,而应是书中跳跃着的真实而鲜活的思想。这种思想就是对“数学本质”的认识,这种思想就是“不在书里,就在书里”,这种思想能让所有教材内容融入到教师的思维中,成为教学的能力源泉。“一个能思想的人,才是一个力量无边的人。”教师只有不断揣摩教材,才能对教材有独到的体悟,在课堂教学中也才能做到“精彩纷呈”。
  让我们来看一则例子:
  若E、F、G、H分别是四边形ABCD各边的中点,说明四边形EFGH是平行四边形的理由。这是初中数学中很典型的一道题目,连接AC,利用三角形的中位线定理,很容易证明。对此我们可以进一步思考,适当地替换它的条件,再考察它的结论的变化情况。
  思考1:如果把条件中的四边形ABCD依次改变为矩形、菱形、正方形或梯形、等腰梯形,其它条件不变,那么所得的四边形EFGH是怎样的四边形呢?
  思考2:如果把结论中的平行四边形EFGH依次改变为矩形、菱形或正方形,那么原四边形ABCD应具备什么条件呢?
  思考3:如果条件中的中点替换为定比分点,那么四边形EFGH是怎样的四边形呢?
  思考4:如果把条件中一组对边的中点改为两条对角线的中点,其它条件不变,则四边形EFGH是怎样的四边形呢?
  面对这么多的变化,学生肯定头疼,如果抓住了四边形ABCD的对角线是相等,还是垂直,还是既相等又垂直,还是既不相等又不垂直这一本质特征,那么这类问题就都可迎刃而解,学生掌握起来容易也乐于掌握。通过这类题目的解答,让学生领悟:数学问题千变万化,而其中的方法是相通的。注重问题间的类比,使解题总结成为自觉的行动,这样可以达到举一反三、由例及类,解一题通一片的目的。
  二、教师要真正做到把数学知识“返璞归真”。
  对许多初中学生来说,学数学难,但又必须学。在学生眼里,数学是一个又一个公式、符号、定理、习题的堆积,它们是如此的抽象、散乱、遥远、不可琢磨,它们就象石塑一般----充满着理性精神的美却显得冰冷和生硬。数学本来是这样,还是我们的数学教学的原因?让我们来看一段函数增减性的教学:
  教师:现在最让中国人骄傲的篮球运动员是谁?学生:姚明。
  教师:你们知道姚明的身高是多少? 学生:2.26米。
  教师:姚明一出生 就是2.26米吗?   众学生:不是。(教师用多媒体展示姚明部分年龄段身高的直方图)
  教师:我们以姚明的年龄为自变量,姚明的身高为函数值建立一个函数关系,能否得到以下结论-----姚明身高随年龄增加而增高?
   学生有的说对,有的说不对,教师不急于揭示答案,而是把学习的目标引向了函数关系中两个变量变化大小的相互依赖关系上。学生所熟悉的生活实例既是激发学生学习兴趣的手段,也是学生理解函数增减性的现实背景。
  三、教师要尊重学生接受知识的已有基础本质。
  “万丈高楼起于平地,千里之行始于足下。”学生能接受新知识是建立在其原有的基础水平之上。教师应该以学生现有思维发展水平为依据,关注学生已有的知识和经验,选择与学生发展水平相适应的学习材料,为学生设置恰当的教学情境,使学生对新知识进行充分的思维加工,通过新知识与已有认知结构之间的相互作用,使新知识同化到已有认知结构中去,达到对新知识的相应理解和主动建构。
  综上所述,本人认为,高境界的数学课堂教学必须呈现“数学本质”。“持之以恒,贵在变通”,在数学的教学过程中,在领会知识的同时,要让学生理解数学最本质的方法,朴素的思想,同时又要重视基础知识,基本技能和基本思想方法。重视通性通法,注重数学问题解决过程中的挖掘,提炼与渗透,挖掘数学知识本身的内在本质,增强运用数学思想方法解决问题的意识和自觉性,重视运用所学知识分析问题和解决问题的能力,而不是简单的掌握知识,解决“会”与“对”的矛盾。只有这样,就一定会让学生在学习数学和教师在教的的过程中都找到乐趣,提高学生的数学素养和能力。 
        参考文献:
        1、张奠宙关于数学知识的教育形态数学通报2010,5
        2、黄晓学让鲜活的思想在数学课堂中流淌数学教育报2009,1