中国学术文献网络出版总库

刊名: 教师教育研究
主办: 北京师范大学;华东师范大学;高等学校教资培训交流北京中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-5905
CN: 11-5147/G4
邮发代号:2-418

历史沿革:
曾用刊名:高等师范教育研究
期刊荣誉:社科双效期刊;国家新闻出版总署收录;中国期刊网核心源刊;CSSCI 中文社会科学引文索引来源期刊;北京大学《中文核心期刊要目总览》来源期刊;
创刊时间:1989

谈中学数学思想方法教学的五条基本原则

【作者】 石曲次仁

【机构】 西藏日喀则市南木林县第一中学

【摘要】
【关键词】
【正文】摘   要:《九年义务教育全日制初级中学数学教学大纲》明确提出数学思想方法是数学基础知识的重要组成部分.数学教学如何才能有利于促进学生数学思想方法的形成和发展呢?笔者从1999年起参与了“发展学生数学思想,提高学生数学素养”的教学实验研究,通过四年的探索,认为进行数学思想方法教学,除了应遵循通常的数学教学的基本原则外,还应遵循以下五条基本原则。
  关键词:中学数学 数学思想方法  五条基本原则
  《九年义务教育全日制初级中学数学教学大纲》明确提出数学思想方法是数学基础知识的重要组成部分.数学教学如何才能有利于促进学生数学思想方法的形成和发展呢?笔者从1999年起参与了“发展学生数学思想,提高学生数学素养”的教学实验研究,通过四年的探索,认为进行数学思想方法教学,除了应遵循通常的数学教学的基本原则外,还应遵循以下五条基本原则:
  1.目标性原则
  既然数学思想方法被纳入数学基础知识的范畴,那么数学课堂教学应该有数学思想方法的教学目标,否则,数学思想方法的教学就得不到应有的保障,在数学课堂教学中亦无法落实.遵循数学思想方法教学的目标性原则,首先要明晰教材中所有数学思想方法,就目前共识的共有三大类18种,即策略思想方法,包括抽象概括、方程与函数、整体、化归、猜想;逻辑型思想方法,包括分类、类比、归纳、反证、演绎、特殊化;技巧型思想方法,包括换元、配方、待定系数、构造、参数、判别式.其次对某些重要的数学思想方法进行分解、细化,使之明朗化,具有层次性.如了解某种数学思想方法的含义及价值为第一层次;掌握某种数学思想方法的初步应用为第二层次;会应用该种数学思想方法指导思维活动,解决某些具体的数学问题为第三层次.第三,在具体的每一节课教学中,数学思想方法教学目标应与课堂教学结构的各个重要环节相匹配,形成知识目标与思想方法目标的有机整合,使之具有可操作性.
  2.渗透性原则
  数学思想方法教学依附于数学知识的教学,但又不同于数学知识教学.在数学思想方法教学中,应以数学知识为载体,挖掘教材中蕴含的数学思想方法,进行恰当的、适时的“渗透性”教学.遵循渗透性教学原则需做到以下两点:
  (1)挖掘渗透内容
  虽然数学思想方法纳入数学基础知识范畴,但数学思想方法是数学知识的精髓,它内隐于数学知识之中,需要从数学知识中挖掘、提炼.比如,在初一新学期开始的第一课,可以有目的地向学生渗透分类的数学思想方法:“新教材共分上下两册,上册分为四章,下册又分为三章,每章都有若干节……”,使学生刚接触到教材就受到分类思想的熏陶;又在寻找各种具体的有理数运算结果的规律中,渗透归纳、抽象概括的思想方法;在“两个相反数相加得零”写在“异号两数相加”的法则里,渗透特殊与一般的思想方法;有理数的大小比较借助于绝对值的概念转化为算术数的大小比较,有理数的减法(除法)运算借助于相反数(倒数)概念转化为加法(乘法)运算等多处渗透化归的数学思想方法.教师只有认真钻研教材,才能正确地挖掘出课本知识中所蕴含的数学思想方法,这是课堂教学中渗透数学思想方法的前提.
  (2)把握渗透的方法
  由于学生数学思想方法的形成和发展比数学知识的增长和积累需要更长的时间,花费更大的精力.因此,在教学中,有机地结合数学表层知识的传授,恰当地渗透其中的数学思想方法,让学生在“数学知识的再发现”过程中享受“创造”或“发现”的愉悦,孕育数学发现的精神品质,这才是成功的渗透方法.
  3.层次性原则
  数学思想方法的形成难于知识的理解和掌握,数学思想方法教学应与知识教学、学生认知水平相适应,数学思想方法教学应螺旋式上升、并遵循阶梯式的层次结构.在实验研究中,笔者认为数学思想方法教学一般要经过渗透孕育期、领悟形成期、应用发展期、巩固深化期四个层次.遵循层次性原则,达到螺旋上升的目的.
  由于数学思想方法有浅显与深奥之别,学生的认知水平和数学思想方法的发展程度也不尽相同.因此,在不同数学思想方法的教学层次的划分也不一样,即使是同一种数学思想方法,它的四个发展期的确定也并不惟一,而应依据实际,作出较为合理的层次划分.
  4.概括性原则
  所谓概括就是将蕴含于数学知识体系中的思想方法归纳、提炼出来.在教学中,遵循概括性原则,将统摄知识的数学思想方法适时地概括出来,可以加强学生对数学思想方法的运用意识,也使其对运用数学思想方法解决问题的具体操作方式有更深入的了解,有利于活化所学知识,形成独立分析问题、解决问题的能力.
  概括数学思想方法一般可分两步进行:一是揭示数学思想方法的内容、规律,即将数学对象共同具有的属性或关系抽取出来,这也就是“概”字的含义;二是明确数学思想方法与知识的联系,即将抽取出来的共性推广至同类的对象上去从而突出从特殊性认识上升为一般性认识.如通过换元法可以将复杂方程转化为简单方程,从而认识到化归思想方法是对换元法的高度概括,还可进一步认识到数学思想方法是数学的灵魂,它是对数学知识的高度概括.
  5.实践性原则
  学生数学思想方法的发展水平最终取决于自身参与数学活动的过程.数学思想方法教学既源于知识教学又高于知识教学.知识教学是认知结果的教学,是重记忆理解的静态型的教学,学生无独立思维活动过程,具有鲜明的个性特征的数学思想方法也无法形成.因此,遵循实践性原则,就是在实际教学中,教师要特别注重营造教学氛围,要给学生提供思想活动的素材、时机,悉心引导学生积极主动地参与到数学知识的发生过程中,在亲自的实践活动中,接受熏陶,不断提炼思想方法、活化思想方法,形成用思想方法指导思维活动,探索问题解答策略的良好习惯.数学思想方法也只有在需要该种思想方法的教学活动中才能形成.