刊名: 教师教育研究
主办: 北京师范大学;华东师范大学;高等学校教资培训交流北京中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-5905
CN: 11-5147/G4
邮发代号:2-418
历史沿革:
曾用刊名:高等师范教育研究
期刊荣誉:社科双效期刊;国家新闻出版总署收录;中国期刊网核心源刊;CSSCI 中文社会科学引文索引来源期刊;北京大学《中文核心期刊要目总览》来源期刊;
创刊时间:1989
浅谈数学教学中如何让学生在生活实践中去学习
【作者】 范令兵
【机构】 湖北省郧西县上津镇中心小学
【摘要】【关键词】
【正文】 学习了《数学课程标准》后,笔者认为数学学习离不开个体的体验。学生需要在自主探究中体验"再创造",在实践操作中体验"做数学",在合作交流中体验"说数学",在联系生活中体验"用数学"。学生体验学习,是要用心去感悟的过程,在体验中思考、创造,才有利于培养创新精神和实践能力,提高学生的数学素养。
一、自主学习--让学生体验"再创造"。
荷兰数学家弗赖登塔尔说过:"学习数学的唯一正确方法是实行再创造。"也就是由学生把本人要学习的东西自己去发现或创造出来,我就是引导和帮助学生去进行这种再创造工作,而不是把现成的知识灌输给学生。学生不实行"再创造",他对学习的内容就难以真正理解,更谈不上灵活运用了。如学习小数除法时,计算"3÷8", 竖式上商0.3后,余下的6究竟表示多少,学生不容易理解。于是,我在横式上写出3÷8=0.3……6,让学生判断是否正确。 经过独立思考,不少学生都想到了利用乘法 是除法的逆运算来检验:0.3×8+6≠3,得出余数应该是0.6而不是6,在竖式上的余数6表示6个十分之一,即每次除后的余数数位与商的数位一致。再如学完了"圆的面积",出示:一个圆,从圆心沿半径切割后,拼成了近似长方形,已知长方形的周长比圆的周长大6厘米,求圆的面积。初看,似乎无从下手,但学生经过自主探究,便能想到:长方形的周长不就比圆周长多出两条宽,也就是两条半径,一条半径的长度是3厘米,问题迎刃而解。作为教师,笔者相信学生的认知潜能,对于难度不大的例题,大胆舍弃过多、过细的铺垫,对学生少一些暗示、干预,要让学生自己去研究、发现,在自主探究中体验,在体验中主动建构知识。
二、在实践中学习--让学生体验"做数学"。
教与学都要以"做"为中心。"做"就是让学生动手操作,在实践中体验数学。通过实践活动,可以使学生获得大量的感性知识,同时有助于提高学生的学习兴趣,激发求知欲。在学习"时分秒的认识"之前,笔者让学生先自制一个钟面模型供上课用,远比带上现成的钟好,因为学生在制作钟面的过程中,通过自己思考或询问家长,已经认真地自学了一次,课堂效果能不好吗?如:一张长30厘米,宽20厘米的长方形纸,在它的四个角上各剪去一个边长5厘米的小正方形后,围成的长方体的体积、表面积各是多少?学生直接解答有困难,若让学生亲自动手做一做,在实践操作的过程中体验长方形纸是怎样围成长方体纸盒的,相信大部分学生都能轻松解决问题,而且掌握牢固。而能清晰地把握,学会逻辑地思考,同时让学生体验了"做数学"的快乐。
三、创新交流--让学生体验"说数学"。
说数学"笔者指的是数学交流。课堂上师生互动、生生互动的合作交流,使学生处于积极、活跃、自由的状态,能出现始料未及的体验和思维火花的碰撞,使不同的学生得到不同的发展。例如学习"分数化成小数",首先让学生把分数一个个地去除,得出1/4、9/25、17/40能化成有限小数的分数。若像教材上一样再将各分数的分母分解质因数,看分母里是不是只含有质因数2或5,最后得出判断分数化成有限小数的方法,这样哪能培养学生的创造思维呢?学生的表情是木然的,像机器一样跟着教师转,如此没有兴趣的学习,效果又能如何呢?可以先让学生猜想:这些分数能化成有限小数,是什么原因?可能与什么有关?学生好像无从下手,几分钟后有学生回答"可能与分子有关,因为1/4、1/5都能化成有限小数";马上有学生反驳:"1/3、1/7的分子同样是1,为什么不能化成有限小数?"另有学生说:"如果用4或5作分母,分子无论是什么数,都能化成有限小数,所以我猜想可能与分母有关。""我认为应该看分母。从分数的意义想,3/4是把单位'1'平均分成4份,有这样的3份,能化成有限小数;而3/7表示把单位'1'平均分成7份,也有这样的3份,可见,让学生在合作交流中充分地表达、争辩,在体验中"说数学"能更好地锻炼创新思维能力。
四、联系生活--让学生体验"用数学"。
《数学课程标准》指出:"数学教学要体现生活性。人人学有价值的数学。"教师要创设条件,要善于引导学生把课堂中所学的数学知识和方法应用于生活实际,既可加深对知识的理解,又能让学生切实体验到生活中处处有数学,体验到数学的价值。例如简便运算125-98,可让学生采用"购物付款的经验"来理解:爸爸有一张百元大钞和25元零钱,买一件98元的上衣,他怎样付钱?营业员怎样找钱?最后爸爸还有多少钱?学生都能回答:爸爸拿出100元给营业员,营业员找给他2元,爸爸最后的钱是25+2=27元。引导学生真正理解"多减了要加上"的规律。
总之,通过以上途径引导学生去学习数学,学生就会产生极大的学习兴趣,获得更多、更广泛的数学知识。
一、自主学习--让学生体验"再创造"。
荷兰数学家弗赖登塔尔说过:"学习数学的唯一正确方法是实行再创造。"也就是由学生把本人要学习的东西自己去发现或创造出来,我就是引导和帮助学生去进行这种再创造工作,而不是把现成的知识灌输给学生。学生不实行"再创造",他对学习的内容就难以真正理解,更谈不上灵活运用了。如学习小数除法时,计算"3÷8", 竖式上商0.3后,余下的6究竟表示多少,学生不容易理解。于是,我在横式上写出3÷8=0.3……6,让学生判断是否正确。 经过独立思考,不少学生都想到了利用乘法 是除法的逆运算来检验:0.3×8+6≠3,得出余数应该是0.6而不是6,在竖式上的余数6表示6个十分之一,即每次除后的余数数位与商的数位一致。再如学完了"圆的面积",出示:一个圆,从圆心沿半径切割后,拼成了近似长方形,已知长方形的周长比圆的周长大6厘米,求圆的面积。初看,似乎无从下手,但学生经过自主探究,便能想到:长方形的周长不就比圆周长多出两条宽,也就是两条半径,一条半径的长度是3厘米,问题迎刃而解。作为教师,笔者相信学生的认知潜能,对于难度不大的例题,大胆舍弃过多、过细的铺垫,对学生少一些暗示、干预,要让学生自己去研究、发现,在自主探究中体验,在体验中主动建构知识。
二、在实践中学习--让学生体验"做数学"。
教与学都要以"做"为中心。"做"就是让学生动手操作,在实践中体验数学。通过实践活动,可以使学生获得大量的感性知识,同时有助于提高学生的学习兴趣,激发求知欲。在学习"时分秒的认识"之前,笔者让学生先自制一个钟面模型供上课用,远比带上现成的钟好,因为学生在制作钟面的过程中,通过自己思考或询问家长,已经认真地自学了一次,课堂效果能不好吗?如:一张长30厘米,宽20厘米的长方形纸,在它的四个角上各剪去一个边长5厘米的小正方形后,围成的长方体的体积、表面积各是多少?学生直接解答有困难,若让学生亲自动手做一做,在实践操作的过程中体验长方形纸是怎样围成长方体纸盒的,相信大部分学生都能轻松解决问题,而且掌握牢固。而能清晰地把握,学会逻辑地思考,同时让学生体验了"做数学"的快乐。
三、创新交流--让学生体验"说数学"。
说数学"笔者指的是数学交流。课堂上师生互动、生生互动的合作交流,使学生处于积极、活跃、自由的状态,能出现始料未及的体验和思维火花的碰撞,使不同的学生得到不同的发展。例如学习"分数化成小数",首先让学生把分数一个个地去除,得出1/4、9/25、17/40能化成有限小数的分数。若像教材上一样再将各分数的分母分解质因数,看分母里是不是只含有质因数2或5,最后得出判断分数化成有限小数的方法,这样哪能培养学生的创造思维呢?学生的表情是木然的,像机器一样跟着教师转,如此没有兴趣的学习,效果又能如何呢?可以先让学生猜想:这些分数能化成有限小数,是什么原因?可能与什么有关?学生好像无从下手,几分钟后有学生回答"可能与分子有关,因为1/4、1/5都能化成有限小数";马上有学生反驳:"1/3、1/7的分子同样是1,为什么不能化成有限小数?"另有学生说:"如果用4或5作分母,分子无论是什么数,都能化成有限小数,所以我猜想可能与分母有关。""我认为应该看分母。从分数的意义想,3/4是把单位'1'平均分成4份,有这样的3份,能化成有限小数;而3/7表示把单位'1'平均分成7份,也有这样的3份,可见,让学生在合作交流中充分地表达、争辩,在体验中"说数学"能更好地锻炼创新思维能力。
四、联系生活--让学生体验"用数学"。
《数学课程标准》指出:"数学教学要体现生活性。人人学有价值的数学。"教师要创设条件,要善于引导学生把课堂中所学的数学知识和方法应用于生活实际,既可加深对知识的理解,又能让学生切实体验到生活中处处有数学,体验到数学的价值。例如简便运算125-98,可让学生采用"购物付款的经验"来理解:爸爸有一张百元大钞和25元零钱,买一件98元的上衣,他怎样付钱?营业员怎样找钱?最后爸爸还有多少钱?学生都能回答:爸爸拿出100元给营业员,营业员找给他2元,爸爸最后的钱是25+2=27元。引导学生真正理解"多减了要加上"的规律。
总之,通过以上途径引导学生去学习数学,学生就会产生极大的学习兴趣,获得更多、更广泛的数学知识。