刊名: 教师教育研究
主办: 北京师范大学;华东师范大学;高等学校教资培训交流北京中心
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1672-5905
CN: 11-5147/G4
邮发代号:2-418
历史沿革:
曾用刊名:高等师范教育研究
期刊荣誉:社科双效期刊;国家新闻出版总署收录;中国期刊网核心源刊;CSSCI 中文社会科学引文索引来源期刊;北京大学《中文核心期刊要目总览》来源期刊;
创刊时间:1989
浅谈初中数学教学中学生解题能力的培养
【作者】 张世虎
【机构】 茂县七一民族中学
【摘要】【关键词】
【正文】摘 要:数学解题能力是一种综合的能力,一般是指综合运用数学基础知识、基本方法和逻辑思维规律,整体发挥数学的基本能力和思维水平,对数学问题进行分析、解决的能力。因此,在教学中,要提高学生的解题能力,除了抓好基础知识、基本能力的学习与培养外,更重要的培养途径就是解题实践,就是遵循科学的解题顺序、有目的、有计划地引导学生如何解题,参与到解题实践过程中,学会解题,从中获得能力。
关键词:数学教学 解题能力 培养
数学教育家波利亚指出:“数学解题能力是一种综合的能力,一般是指综合运用数学基础知识、基本方法和逻辑思维规律,整体发挥数学的基本能力和思维水平,对数学问题进行分析、解决的能力。”因此,在教学中,要提高学生的解题能力,除了抓好基础知识、基本能力的学习与培养外,更重要的培养途径就是解题实践,就是遵循科学的解题顺序、有目的、有计划地引导学生如何解题,参与到解题实践过程中,学会解题,从中获得能力。教学关键是教会学生用所学的知识解决实际问题,即要提高学生的解题能力。”通过解题训练来培养解题能力,提高数学素养。那么,怎样加强解题训练,从而提高学生的解题能力,本人认为可从以下方面着手:
一、培养仔细审题的好习惯
1、首先认真仔细地审题,提高审题能力是解题的首要前提
审题是解题的基础,学生解题错误或解题感到困难,往往是由于不认真审题或不善于审题所造成的。因为审题为探索解题途径提供方向,为选择解法提供决策的依据。因此,教学中要求学生养成仔细、认真的审题习惯,通读题,对题目中的条件(特别是发现题目中隐含条件)、问题及有关的情况,进行整体认识,充分理解题意,把握本质和联系,理清正确的解题思路。
2、其次、挖掘隐含条件
隐含条件是指题目中虽给出但并不明显,或没有给但隐含在题意中的那些条件,对于前者需要将不明显的条件转化为明显的条件。对于后者,则需要根据题设,挖掘隐含在题意中的条件。从某种意义上来说,养成审题的习惯,提高审题能力重要的是提高学生挖掘隐含条件化未知为已知的能力。
3、分析解题思路、探求解题途径,发现解题规律、掌握解题方法
一个正确的解题途径、一条正确的解题思路的形成过程是比较复杂的,它涉及到学生的基础知识水平、解题经验和解题能力等因素。虽然就其思维形式而言,只有由因导果和执果索因的综合法和分析法两种,但就探索解题途径的策略、方法和技巧等问题而言,确是丰富多彩、千变万化和灵活多样的。因此,分析思路、探求途径是解题教学的重点,也是提高学生解题能力的核心关键所在。
4、多向探索,积累技巧,培养解题的灵活性
求异思维是一种创造性思维。它要求学生凭借自己的知识水平能力,对某一问题从不同的角度,不同的方位去思考,创造性地解决问题。而学生的思维是以具体形象思维为主,容易产生消极的思维定势,造成一些机械思维模式,干扰解题的准确性和灵活性。为了排除学生类似的消极思维定势的干扰,在解题中,要努力创造条件,引导学生从各个角度去分析思考问题,发展学生的求异思维,使其创造性地解决问题。通常运用的方法有“一题多问"、“一题多解"和“一题多变"。另外教会学生注意解题技巧积累。
一些难度中上的题目,一般需要一些处理过程才可应用书本的有关知识解决。例如几何中的辅助线问题通常结合定理进行,运用不同定理解题的技巧也不同。又如代数中学生若不理解并熟记一些解题技巧,即使概念定理、公式学得再熟,也难以用得上,这只能解一些较为基础的题。因此要想做好难题、技巧题记好笔记是有必要的,这样能加深各种类型题的认识。
二、培养“数形”结合的能力
1、数学是研究数量关系与空间形式的科学。数具有抽象概括的特征,形具有具体形象的特点。数与形两者本没有不可逾越的鸿沟,著名数学家华罗庚说过:“数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分开万事非”。这说明,以形助数,可使许多抽象的概念和复杂的关系直观化、形象化、简单化;而用数解形,借助数量的计算和分析,可使问题的解决严谨化。如能注意运用形数结合,相互补充,往往会收到事半功倍之效果。在初二建立平面直角坐标系后,研究函数的问题就离不开图像了。往往借助图像能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。
2、在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾上了一点边,就应该根据题意画出草图来分析一番。这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人就会慢慢养成一种“数形结合”的好习惯。
三、培养“方程”的思维能力
数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如匀速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关的等式:速度ⅹ时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、分式方程。解这些方程的思维几乎一致,都是通过一定的方法将它们转化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际运用,都需要建立方程,通过解方程来求出结果。因此同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
总之,学生需要掌握科学的解题程序、解题的策略和方法、技巧,学好有关的数学基础知识,仔细审题,养成良好的数学思维习惯,不断反思、总结、归纳、推广,做到触类傍通、举一反三,解题能力和整体素质才能逐步提高。
参考文献:
1、《教学课程标准改革》,(教育部基础教育局组织编导)
2、《新课程与课堂教学改革》,(集美大学师范学院,方元山)
3、[美] G 波利亚,《怎样解题》,(译者涂泓、冯承天),上海科技教育出版社 ,2002年6月
关键词:数学教学 解题能力 培养
数学教育家波利亚指出:“数学解题能力是一种综合的能力,一般是指综合运用数学基础知识、基本方法和逻辑思维规律,整体发挥数学的基本能力和思维水平,对数学问题进行分析、解决的能力。”因此,在教学中,要提高学生的解题能力,除了抓好基础知识、基本能力的学习与培养外,更重要的培养途径就是解题实践,就是遵循科学的解题顺序、有目的、有计划地引导学生如何解题,参与到解题实践过程中,学会解题,从中获得能力。教学关键是教会学生用所学的知识解决实际问题,即要提高学生的解题能力。”通过解题训练来培养解题能力,提高数学素养。那么,怎样加强解题训练,从而提高学生的解题能力,本人认为可从以下方面着手:
一、培养仔细审题的好习惯
1、首先认真仔细地审题,提高审题能力是解题的首要前提
审题是解题的基础,学生解题错误或解题感到困难,往往是由于不认真审题或不善于审题所造成的。因为审题为探索解题途径提供方向,为选择解法提供决策的依据。因此,教学中要求学生养成仔细、认真的审题习惯,通读题,对题目中的条件(特别是发现题目中隐含条件)、问题及有关的情况,进行整体认识,充分理解题意,把握本质和联系,理清正确的解题思路。
2、其次、挖掘隐含条件
隐含条件是指题目中虽给出但并不明显,或没有给但隐含在题意中的那些条件,对于前者需要将不明显的条件转化为明显的条件。对于后者,则需要根据题设,挖掘隐含在题意中的条件。从某种意义上来说,养成审题的习惯,提高审题能力重要的是提高学生挖掘隐含条件化未知为已知的能力。
3、分析解题思路、探求解题途径,发现解题规律、掌握解题方法
一个正确的解题途径、一条正确的解题思路的形成过程是比较复杂的,它涉及到学生的基础知识水平、解题经验和解题能力等因素。虽然就其思维形式而言,只有由因导果和执果索因的综合法和分析法两种,但就探索解题途径的策略、方法和技巧等问题而言,确是丰富多彩、千变万化和灵活多样的。因此,分析思路、探求途径是解题教学的重点,也是提高学生解题能力的核心关键所在。
4、多向探索,积累技巧,培养解题的灵活性
求异思维是一种创造性思维。它要求学生凭借自己的知识水平能力,对某一问题从不同的角度,不同的方位去思考,创造性地解决问题。而学生的思维是以具体形象思维为主,容易产生消极的思维定势,造成一些机械思维模式,干扰解题的准确性和灵活性。为了排除学生类似的消极思维定势的干扰,在解题中,要努力创造条件,引导学生从各个角度去分析思考问题,发展学生的求异思维,使其创造性地解决问题。通常运用的方法有“一题多问"、“一题多解"和“一题多变"。另外教会学生注意解题技巧积累。
一些难度中上的题目,一般需要一些处理过程才可应用书本的有关知识解决。例如几何中的辅助线问题通常结合定理进行,运用不同定理解题的技巧也不同。又如代数中学生若不理解并熟记一些解题技巧,即使概念定理、公式学得再熟,也难以用得上,这只能解一些较为基础的题。因此要想做好难题、技巧题记好笔记是有必要的,这样能加深各种类型题的认识。
二、培养“数形”结合的能力
1、数学是研究数量关系与空间形式的科学。数具有抽象概括的特征,形具有具体形象的特点。数与形两者本没有不可逾越的鸿沟,著名数学家华罗庚说过:“数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分开万事非”。这说明,以形助数,可使许多抽象的概念和复杂的关系直观化、形象化、简单化;而用数解形,借助数量的计算和分析,可使问题的解决严谨化。如能注意运用形数结合,相互补充,往往会收到事半功倍之效果。在初二建立平面直角坐标系后,研究函数的问题就离不开图像了。往往借助图像能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。
2、在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾上了一点边,就应该根据题意画出草图来分析一番。这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人就会慢慢养成一种“数形结合”的好习惯。
三、培养“方程”的思维能力
数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如匀速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关的等式:速度ⅹ时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、分式方程。解这些方程的思维几乎一致,都是通过一定的方法将它们转化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际运用,都需要建立方程,通过解方程来求出结果。因此同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
总之,学生需要掌握科学的解题程序、解题的策略和方法、技巧,学好有关的数学基础知识,仔细审题,养成良好的数学思维习惯,不断反思、总结、归纳、推广,做到触类傍通、举一反三,解题能力和整体素质才能逐步提高。
参考文献:
1、《教学课程标准改革》,(教育部基础教育局组织编导)
2、《新课程与课堂教学改革》,(集美大学师范学院,方元山)
3、[美] G 波利亚,《怎样解题》,(译者涂泓、冯承天),上海科技教育出版社 ,2002年6月